Effective third-order nonlinearities in metallic refractory titanium nitride thin films

نویسندگان

  • Nathaniel Kinsey
  • Akbar Ali Syed
  • Devon Courtwright
  • Clayton DeVault
  • Carl E. Bonner
  • Vladimir I. Gavrilenko
  • Vladimir M. Shalaev
  • David J. Hagan
  • Eric W. Van Stryland
  • Alexandra Boltasseva
چکیده

Nanophotonic devices offer an unprecedented ability to concentrate light into small volumes which can greatly increase nonlinear effects. However, traditional plasmonic materials suffer from low damage thresholds and are not compatible with standard semiconductor technology. Here we study the nonlinear optical properties in the novel refractory plasmonic material titanium nitride using the Z-scan method at 1550 nm and 780 nm. We compare the extracted nonlinear parameters for TiN with previous works on noble metals and note a similarly large nonlinear optical response. However, TiN films have been shown to exhibit a damage threshold up to an order of magnitude higher than gold films of a similar thickness, while also being robust, cost-efficient, bioand CMOScompatible. Together, these properties make TiN a promising material for metal-based nonlinear optics. ©2015 Optical Society of America OCIS codes: (190.0190) Nonlinear optics; (160.4330) Nonlinear optical materials. References and links 1. N. Bloembergen, W. Burns, and M. Matsuoka, “Reflected third harmonic generated by picosecond laser pulses,” Opt. Commun. 1(4), 1–4 (1969). 2. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012). 3. M. I. Stockman, “Nanoplasmonics: past, present, and glimpse into future,” Opt. Express 19(22), 22029–22106 (2011). 4. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007). 5. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surfaces,” Phys. Rev. B 21(10), 4389–4403 (1980). 6. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313(5786), 502–504 (2006). 7. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Second-harmonic generation in nonlinear left-handed metamaterials,” J. Opt. Soc. Am. B 23(3), 529–534 (2006). 8. M. D. McMahon, R. Lopez, R. F. H. Jr, E. A. Ray, and P. H. Bunton, “Second-harmonic generation from arrays of symmetric gold nanoparticles,” Phys. Rev. B 73(4), 041401 (2006). 9. I. Y. Park, S. Kim, J. Choi, D. H. Lee, Y. J. Kim, M. F. Kling, M. I. Stockman, and S. W. Kim, “Plasmonic generation of ultrashort extreme-ultraviolet light pulses,” Nat. Photonics 5(11), 677–681 (2011). 10. K. MacDonald, Z. Sámson, M. Stockman, and N. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2009). 11. A. V. Krasavin, T. P. Vo, W. Dickson, P. M. Bolger, and A. V. Zayats, “All-plasmonic modulation via stimulated emission of copropagating surface plasmon polaritons on a substrate with gain,” Nano Lett. 11(6), 2231–2235 (2011). 12. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012). #246433 Received 24 Jul 2015; accepted 29 Sep 2015; published 2 Oct 2015 © 2015 OSA 1 Nov 2015 | Vol. 5, No. 11 | DOI:10.1364/OME.5.002395 | OPTICAL MATERIALS EXPRESS 2395 13. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). 14. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010). 15. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled flourescence,” Plasmonics 1(1), 5–33 (2006). 16. J. B. Khurgin and G. Sun, “Plasmonic enhancement of the third order nonlinear optical phenomena: figures of merit,” Opt. Express 21(22), 27460–27480 (2013). 17. U. Guler, A. Boltasseva, and V. M. Shalaev, “Applied physics. Refractory plasmonics,” Science 344(6181), 263– 264 (2014). 18. J. Lee, M. Tymchenko, C. Argyropoulos, P. Y. Chen, F. Lu, F. Demmerle, G. Boehm, M. C. Amann, A. Alù, and M. A. Belkin, “Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions,” Nature 511(7507), 65–69 (2014). 19. G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: beyond gold and silver,” Adv. Mater. 25(24), 3264–3294 (2013). 20. D. Starosvetsky and I. Gotman, “Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy,” Biomaterials 22(13), 1853–1859 (2001). 21. W. Li, U. Guler, N. Kinsey, G. V. Naik, A. Boltasseva, J. Guan, V. M. Shalaev, and A. V. Kildishev, “Refractory plasmonics with titanium nitride: broadband metamaterial absorber,” Adv. Mater. 26(47), 7959–7965 (2014). 22. S. Divya, V. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Evaluation of nonlinear optical parameters of TiN/PVA nanocomposite A comparison between semi-empirical relation and Z-scan results,” Curr. Appl. Phys. 14(1), 93–98 (2014). 23. S. Divya, V. P. N. Nampoori, P. Radhakrishnan, and A. Mujeeb, “Origin of optical non-linear response in TiN owing to excitation dynamics of surface plasmon resonance electronic oscillations,” Laser Phys. Lett. 11(8), 085401 (2014). 24. K. Fukumi, A. Chayahara, K. Kadono, T. Sakaguchi, Y. Horino, M. Miya, K. Fujii, J. Hayakawa, and M. Satou, “Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties,” J. Appl. Opt. 75, 3075 (1994). 25. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990). 26. M. R. Ferdinandus, M. Reichert, T. R. Ensley, H. Hu, D. A. Fishman, S. Webster, D. J. Hagan, and E. W. van Stryland, “Dual-arm Z-scan technique to extract dilute solute nonlinearities from solution measurements,” Opt. Mater. Express 2(12), 1776–1790 (2012). 27. R. del Coso and J. Solis, “Relation between nonlinear refractive index and third-order susceptibility in absorbing media,” J. Opt. Soc. Am. B 21(3), 640–644 (2004). 28. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film,” J. Appl. Opt. 86, 6200 (1999). 29. E. Xenogiannopoulou, P. Aloukos, S. Couris, E. Kaminska, A. Piotrowska, and E. Dynowska, “Third-order nonlinear optical properties of thin sputtered gold films,” Opt. Commun. 275(1), 217–222 (2007). 30. S. Ishii, U. K. Chettiar, X. Ni, and A. V. Kildishev, “PhotonicsRT: Wave propagation in multilayer structures,” https://nanohub.org/resources/photonicsrt (2014). 31. R. Boyd, Nonlinear Optics (Elsevier, 2008). 32. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2005). 33. B. F. Naylor, “High-temperature heat contents of Titanium Carbide and Titanium Nitride,” J. Am. Chem. Soc. 68(3), 370–371 (1946). 34. S. T. Sundari, R. Ramaseshan, F. Jose, S. Dash, and A. K. Tyagi, “Investigation of temperature dependent dielectric constant of a sputtered TiN thin film by spectroscopic ellipsometry,” J. Appl. Opt. 115, 00335161– 00335166 (2014). 35. R. L. Sutherland, D. G. Mclean, and S. Kirkpatrick, Handbook of Nonlinear Optics (Marcel Dekker, 2003). 36. G. Yang, D. Guan, W. Wang, W. Wu, and Z. Chen, “The inherent optical nonlinearities of thin silver films,” Opt. Mater. 25(4), 439–443 (2004). 37. N. Rotenberg, A. D. Bristow, M. Pfeiffer, M. Betz, and H. M. van Driel, “Nonlinear absorption in Au films: Role of thermal effects,” Phys. Rev. B 75(15), 155426 (2007). 38. M. M. Alvarez, J. T. Khoury, T. G. Schaaff, M. N. Shafigullin, I. Vezmar, and R. L. Whetten, “Optical Absorption Spectra of Nanocrystal Gold Molecules,” J. Phys. Chem. B 101(19), 3706–3712 (1997). 39. B. Gakovic, M. Trtica, D. Batani, P. Panjan, and D. Vasiljevic-Radovic, “Surface modification of titanium nitride film by a picosecond Nd:YAG laser,” J. Opt. A, Pure Appl. Opt. 9(6), 76–80 (2007). 40. X. Ni, Z. Liu, and A. V. Kildishev, “PhotonicsDB: Optical Constants,” https://nanohub.org/resources/3692 (2010). 41. G. V. Naik, B. Saha, J. Liu, S. M. Saber, E. A. Stach, J. M. K. Irudayaraj, T. D. Sands, V. M. Shalaev, and A. Boltasseva, “Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 111(21), 7546–7551 (2014). #246433 Received 24 Jul 2015; accepted 29 Sep 2015; published 2 Oct 2015 © 2015 OSA 1 Nov 2015 | Vol. 5, No. 11 | DOI:10.1364/OME.5.002395 | OPTICAL MATERIALS EXPRESS 2396

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanocharacterization of titanium nitride thin films obtained by reactive magnetron sputtering

Titanium nitride thin films are used in applications such as tribological layers for cutting tools, coating of some medical devices (scalpel blades, prosthesis, implants etc.), sensors, electrodes for bioelectronics, microelectronics, diffusion barrier, bio-microelectromechanical systems (Bio-MEMS) and so on. This work is a comparative study concerning the influence of substrate temperature on ...

متن کامل

A Review on Titanium Nitride and Titanium Carbide Single and Multilayer Coatings Deposited by Plasma Assisted Chemical Vapor Deposition

In this paper, we reviewed researches about the titanium nitride (TiN) and titanium carbide (TiC) single and multilayer coatings. These coatings were deposited by the plasma assisted chemical vapor deposition (PACVD) technique. Plasma-based technologies are used for the processing of thin films and coatings for different applications such as automobile and aerospace parts, computer disc drives,...

متن کامل

Plasma-based ion implantation utilising a cathodic arc plasma

Plasma-based ion implantation (PBII) is usually carried out with isotropic gaseous plasmas, such as a discharge in nitrogen. More recently, it has been applied using drifting plasmas, such as those produced by cathodic arcs, in order to allow efficient implantation of metallic species. The condensable nature of a cathodic arc plasma allows for the deposition of ion-stitched thin film coatings, ...

متن کامل

Oral presentations O1.1 Contact of blood and endithelial cells with surface-modified metallic biomaterials

Significant progress made in materials science, mainly in the technology of surface, allows for intentional modifications of metallic surfaces. Thin layers of modified surfaces separate metallic substrates from environment and prevent them from corrosion. However, a real opportunity to control the interaction of surface with surrounding tissues and body fluids, with respect to the anticipated a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015